Adaptive Multi-task Sparse Learning with an Application to fMRI Study

نویسندگان

  • Xi Chen
  • Jingrui He
  • Rick Lawrence
  • Jaime G. Carbonell
چکیده

In this paper, we consider the multi-task sparse learning problem under the assumption that the dimensionality diverges with the sample size. The traditional l1/l2 multi-task lasso does not enjoy the oracle property unless a rather strong condition is enforced. Inspired by adaptive lasso, we propose a multi-stage procedure, adaptive multi-task lasso, to simultaneously conduct model estimation and variable selection across different tasks. Motivated by adaptive elastic-net, we further propose the adaptive multi-task elastic-net by adding another quadratic penalty to address the problem of collinearity. When the number of tasks is fixed, under weak assumptions, we establish the asymptotic oracle property for the proposed adaptive multi-task sparse learning methods including both adaptive multitask lasso and elastic-net. In addition to the desirable asymptotic property, we show by simulations that adaptive sparse learning methods also achieve much improved finite sample performance. As a case study, we apply adaptive multi-task elastic-net to a cognitive science problem, where one wants to discover a compact semantic basis for predicting fMRI images. We show that adaptive multi-task sparse learning methods achieve superior performance and provide some insights into how the brain represents meanings of words.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Effect of Music on Spatial Learning in a Virtual Reality Task

Background: Spatial learning and navigation is a fundamental cognitive ability consisting of multiple cognitive components. Despite intensive efforts conducted with the assistance of virtual reality technology and functional Magnetic Resonance Imaging (fMRI) modality, the music effect on this cognition and the involved neuronal mechanisms remain elusive. Objectives: We aimed to investigate the...

متن کامل

Hyperspectral Target Detection via Adaptive Joint Sparse Representation and Multi-Task Learning with Locality Information

Target detection from hyperspectral images is an important problem but encounters a critical challenge of simultaneously reducing spectral redundancy and preserving the discriminative information. Recently, the joint sparse representation and multi-task learning (JSR-MTL) approach was proposed to address the challenge. However, it does not fully explore the prior class label information of the ...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

Redesign Development and Learning Model 70:20:10 At National Petrochemical Company: Formative Reasearch

This study aimed to redesign an 70:20:10 model at the national petrochemical company. Despite the evidence of its effectiveness and its application at international companies, research to identify the strengths, weaknesses and possible modification was not found. The research method is qualitative of the type of formative research; and the data were collected using interviews and review of docu...

متن کامل

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012